Our #EgoEvidence

The real research behind our real results

Our product development framework integrates peer-reviewed research with empirical consumer data to address gaps in current cosmetic approaches. Rather than following market trends, we systematically evaluate published studies on ingredient-acne interactions while incorporating qualitative data from individuals with hormonal acne, malassezia folliculitis, rosacea, eczema, and sensitive skin conditions. This dual approach acknowledges that while mechanistic studies provide valuable insights into acne pathophysiology, consumer tolerance and real-world efficacy often diverge from controlled laboratory and study conditions.


We recognize that research definitively linking specific cosmetic ingredients to acne pathogenesis remains limited and flawed, with much of the current literature focused on individual components rather than complex formulation interactions. Our methodology treats published research as foundational guidance rather than prescriptive protocols, allowing for formulation adjustments based on tolerability profiles, stability requirements, and manufacturing constraints. This approach reflects the reality that translating laboratory findings into commercially viable, consumer-tolerated products requires balancing scientific rigor with practical formulation science.


We acknowledge that widely-used marketing terms such as "acne safe," "non-comedogenic," "dermatologist tested," "hypoallergenic," and "fungal acne safe" lack standardized regulatory definitions and exist primarily as consumer-facing descriptors. However, we employ this terminology strategically because it represents the language consumers use when seeking appropriate products for their skin concerns. Simultaneously, we are working to develop evidence-based frameworks to establish meaningful criteria for these terms, particularly "fungal acne safe," "acne safe," and "non-comedogenic," grounded in mechanistic understanding rather than marketing convention.


As the field continues to evolve, we will contribute to the growing body of evidence through systematic documentation of our formulation outcomes and consumer feedback, recognizing that advancing acne supportive skincare requires both rigorous research interpretation and iterative product development informed by clinical experience.


The following compilation represents the current scientific literature that directly informs our product development methodology and brand ethos outlined above. This (imperfect) literature provides the mechanistic foundation upon which all our innovations are built.

Kardeh, S., Moein, S. A., Namazi, M. R., & Kardeh, B. (2021). Evidence for the important role of oxidative stress in the pathogenesis of acne. Galen Medical Journal, 8, e1291. https://doi.org/10.31661/gmj.v8i0.1291


Bowe, W. P., & Logan, A. C. (2010). Clinical implications of lipid peroxidation in acne vulgaris. Lipids in Health and Disease, 9, 141. https://doi.org/10.1186/1476-511X-9-141


Su, L., Wang, F., Wang, Y., Qin, C., Yang, X., & Ye, J. (2024). Circulating biomarkers of oxidative stress in people with acne vulgaris: a systematic review and meta-analysis. Archives of Dermatological Research, 316(4), 105. https://doi.org/10.1007/s00403-024-02840-5



Popa, G. L., Mitran, C. I., Mitran, M. I., Tampa, M., Matei, C., Popa, M. I., & Georgescu, S. R. (2023). Markers of oxidative stress in patients with acne: A literature review. Life, 13(7), 1433. https://doi.org/10.3390/life13071433


Reynolds, R. V., Yeung, H., Cheng, C. E., Cook-Bolden, F., Desai, S. R., Druby, K. M., Freeman, E. E., Keri, J. E., Stein Gold, L. F., Tan, J. K., Tollefson, M. M., Weiss, J. S., Wu, P. A., Zaenglein, A. L., Han, J. M., & Barbieri, J. S. (2024). Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology, 90(5), 1006.e1-1006.e30. https://doi.org/10.1016/j.jaad.2023.12.017


Thiboutot, D., Jabara, S., Thibault, A., Knaggs, H., & Pelle, E. (2013). Acne vulgaris and the epidermal barrier. Journal of Clinical and Aesthetic Dermatology, 6(12), 36-44.


Kim, I., Jung, D. R., Kim, R. H., Lee, D., Jung, Y., Ha, J. H., Lee, E. K., Kim, J. M., Kim, J. Y., Jang, J. H., Bae, J. T., Cho, Y. S., & Shin, J. H. (2024). Complete genome of single locus sequence typing D1 strain Cutibacterium acnes CN6 isolated from healthy facial skin. BMC Genomic Data, 25(1), 94. https://doi.org/10.1186/s12863-024-01277-z


O'Neill, A. M., Cavagnero, K. J., Seidman, J. S., Zaramela, L., Chen, Y., Li, L., Rawls, M., Tom, W. L., Zhu, W., Phakoona, A., Curd, E., Parker, A., Williams, K., Paladini, P., Plissard, C., Dorrestein, P. C., Gallo, R. L., & Knight, R. (2024). Genetic and functional analyses of Cutibacterium acnes isolates reveal association of a linear plasmid with skin inflammation. Journal of Investigative Dermatology, 144(1), 116-124. https://doi.org/10.1016/j.jid.2023.07.018


Cavallo, I., Sivori, F., Truglio, M., Maio, F., Lucantoni, F., Cardinali, G., De Cesare, G. B., Pontone, M., Curtolo, A., Cocchi, P., Sperduti, I., Rossi, E. D., Ensoli, F., Cristaudo, A., Palamara, A. T., Masci, A. M., Pimpinelli, F., & Di Domenico, E. G. (2022). Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Scientific Reports, 12(1), 21104. https://doi.org/10.1038/s41598-022-25436-3


Sánchez-Pellicer, P., Navarro-Moratalla, L., Núñez-Delegido, E., Ruzafa-Costas, B., Agüera-Santos, J., & Navarro-López, V. (2022). Acne, microbiome, and probiotics: The gut-skin axis. Microorganisms, 10(7), 1303. https://doi.org/10.3390/microorganisms10071303


Fulton, J. E. (1984). Comedogenicity of current therapeutic products, cosmetics, and their ingredients. Journal of the American Academy of Dermatology, 10(4), 525-532.


Mills, O. H., & Kligman, A. M. (1975). Acne mechanica. Archives of Dermatology, 111(4), 481-483.


Mills, O. H., & Kligman, A. M. (1982). A human model for assessing comedogenic substances. Archives of Dermatology, 118(11), 903-905.


Waranuch, N., Jaruratanasirikul, N., Panapisal, V., Singha, W., & Maneenuan, D. (2021). Safety assessment on comedogenicity of dermatological products. Journal of Cosmetic Dermatology, 20(7), 2254-2262.


de Groot, A. C., & Stappen, I. (2018). Essential oils and their single compounds in cosmetics—A critical review. Cosmetics, 5(1), 11. https://doi.org/10.3390/cosmetics5010011


Ottaviani, M., Camera, E., & Picardo, M. (2021). Effect of commonly used cosmetic preservatives on skin resident microflora dynamics. Journal of Cosmetic Dermatology, 20(4), 1079-1089.


Singh, V., Redhu, R., Verma, R., Mittal, V., & Kaushik, D. (2021). Anti-acne treatment using nanotechnology based on novel drug delivery system and patents on acne formulations: A review. Recent Patents on Nanotechnology, 15(4), 331-350. https://doi.org/10.2174/1872210514999201209214011


González-Serva, A., Santos, M., Kerdel, F. A., & Eaglstein, W. H. (2004). Error of refraction: polarizable crystals within most open comedones. Acta Dermato-Venereologica, 84(6), 476-479.


Ashbee, H. R. (2002). Immunology of diseases associated with Malassezia species. Clinical Microbiology Reviews, 15(1), 21-57.


Tejima, K., Yoshida, Y., Okabayashi, K., Taniguchi, M., & Kamei, K. (2019). Long-chain acyl-CoA synthetase and growth of Malassezia. Medical Mycology, 57, 980-989.


Triana, S., de García, M. C. G., Restrepo, S., Tabares, A. M., Gomes, M. A., & Cárdenas, M. (2017). Lipid metabolic versatility in Malassezia yeasts. Frontiers in Microbiology, 8, 1772.


Limbu, S., Tatzel, S., Kuchler-Bopp, S., Zahra, H., Benkirane-Jessel, N., & Schneider, P. (2021). A folliculocentric perspective of dandruff pathogenesis. BioEssays, 43(6), e2100005.


Martínez-Ortega, J. I., Fernández-González, M., & Romero-Jiménez, R. M. (2024). Malassezia folliculitis: Pathogenesis and diagnostics. Dermatology Practical & Conceptual, 14(3), e2024xx.

Oyewole, A. O., Birch-Machin, M. A., Gendron, A. C., & Rees, J. L. (2015). Role of ultraviolet radiation in acne pathogenesis via sebum peroxidation. Experimental Dermatology, 24(5), 400-408.


Pham, D.-M., Boussouira, B., Moyal, D., & Nguyen, Q. L. (2015). Oxidization of squalene: a key skin event with clinical relevance. International Journal of Cosmetic Science, 37(4), 357-365.


Valacchi, G., Sticozzi, C., Pecorelli, A., Cervellati, F., Cervellati, C., & Maioli, E. (2001). Effect of benzoyl peroxide on antioxidant status and cytokines in keratinocytes. Toxicology in Vitro, 15(6), 323-328.


Weber, S. U., Thiele, J. J., Cross, C. E., & Packer, L. (2003). Topical α-tocotrienol inhibits lipid peroxidation but not BP-induced TEWL. Free Radical Biology & Medicine, 34(2), 170-176.


Rodriguez, I., Lewis, J., & Zhai, H. (2024). Navigating allergic contact dermatitis to fragrance. Cutis, 114(2), 41-45.


Sukakul, T., Napattarachaibumrung, P., Soh, M. Q., Kunkun, A., Iomtawiatchaisak, K., Naraphisa, N., Boonchai, W., & Woo, Y. R. (2024). Fragrance contact allergy—A review focusing on patch testing. Acta Dermato-Venereologica, 104, adv40332.


Uter, W., Johansen, J. D., Börje, A., Karlberg, A.-T., Lidén, C., Rastogi, S., Roberts, D., & White, I. R. (2017). Contact allergy to fragrances: Current clinical and regulatory status. Allergo Journal International, 26(3), 123-137.


Patel, K., Michaelis, T. C., Katta, R., & Baron, E. D. (2022). Irritant contact dermatitis—a review. Clinical, Cosmetic and Investigational Dermatology, 15, 1495-1510.


Parać, E., Grubišić-Čabo, F., & Šitum, M. (2023). Acne-like eruptions: Disease features and differential diagnosis. Cosmetics, 10(3), 89.


Kligman, A. M., & Mills, O. H. (1972). Acne cosmetica. Archives of Dermatology, 106(6), 843-850.


Kossard, S., Zagarella, S., & Lee, M. S. (2021). Eruptive necrotizing infundibular crystalline folliculitis. American Journal of Dermatopathology, 43(12), 879-883.


Saxer-Sekulic, N., Hrabec, Z., Anzengruber, F., Dummer, R., Kerl, K., & French, L. E. (2014). Necrotizing infundibular crystalline folliculitis. Dermatology, 228(1), 1-4.

The Evidence Behind Every Formula

A closer look at the research that shaped and inspired each SKU—from ingredient selection to formulation strategy.

Super Sensa Evidence

Here are the research and studies that inspired our Super Sensa formula:

Gehring, W., & Gloor, M. (2000). Effect of topically applied dexpanthenol on epidermal barrier function and stratum corneum hydration: Results of a human in vivo study. Arzneimittelforschung, 50(7), 659–663. 

PubMed


Camargo, F. B., Jr., Gaspar, L. R., & Maia Campos, P. M. B. G. (2011). Skin moisturizing effects of panthenol-based formulations. Journal of Cosmetic Science, 62(4), 361–370. 

PubMed


Stettler, H., Kurka, P., Lunau, N., et al. (2017). A new topical panthenol-containing emollient: Results from two randomized controlled studies assessing skin moisturization and barrier restoration potential, and the effect on skin microflora. Journal of Dermatological Treatment, 28(2), 173–180. 

PubMed


Biro, K., Thaçi, D., Ochsendorf, F. R., Kaufmann, R., & Boehncke, W.-H. (2003). Efficacy of dexpanthenol in skin protection against irritation: A double-blind, placebo-controlled study. Contact Dermatitis, 49(2), 80–84. 

PubMed


Proksch, E., & Nissen, H. P. (2002). Dexpanthenol enhances skin barrier repair and reduces inflammation after sodium lauryl sulphate-induced irritation. Journal of Dermatological Treatment, 13(4), 173–178. 


Gao, M., Gao, N., Wang, L., et al. (2025). Evaluation of the efficacy and safety of a panthenol-enriched mask for skin barrier recovery after facial laser treatment: Double-blind randomized controlled study. Journal of Cosmetic Dermatology, 24(7), e70223. 


Addor, F. A. S. A., et al. (2021). Efficacy and safety of topical dexpanthenol-containing spray vs. petrolatum after non-ablative laser: Randomized split-face trial. Cosmetics, 8(3), 87. 


Cho, Y. S., Kim, H. O., Woo, S. M., & Lee, D. H. (2022). Use of dexpanthenol for atopic dermatitis—Benefits and recommendations based on current evidence. Journal of Clinical Medicine, 11(14), 3943. 


Peltier, E., et al. (2022). Dexpanthenol-containing liquid cleanser in atopic-prone skin: Multicenter observational study (4 weeks). Clinical, Cosmetic and Investigational Dermatology, 15, 1967–1979. 


Proksch, E., de Bony, R., Trapp, S., & Boudon, S. (2017). Topical use of dexpanthenol: A 70th anniversary article. Journal of Dermatological Treatment, 28(8), 766–773. (Narrative review). 


Gorski, J., Proksch, E., Baron, J. M., Schmid, D., & Zhang, L. (2020). Dexpanthenol in wound healing after medical and cosmetic interventions (postprocedure wound healing). Pharmaceuticals, 13(7), 138.

Cheng, W., Liu, X., Zhao, H., & Yu, J. (2022). Ectoin protects human skin fibroblasts from oxidative damage. Applied Sciences, 12(17), 8531. 


Marini, A., Reinelt, K., Krutmann, J., & Wlaschek, M. (2014). Ectoine-containing cream in mild to moderate atopic dermatitis. Skin Pharmacology and Physiology, 27(2), 57–65.


Załęska, I., et al. (2025). Ectoine improved parameters in laser-damaged skin models. Molecules, 30(11), 2470.

Schrader A, Siefken W, Kueper T, Breitenbach U, Gatermann C, Sperling G, Biernoth T, Scherner C, Stäb F, Wenck H, Wittern KP, Blatt T. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol Physiol. 2012;25(4):192-9. doi: 10.1159/000338190. Epub 2012 May 15. PMID: 22584263.


Weber, Teresa & Kausch, Martina & Rippke, Frank & Schoelermann, Andrea & Filbry, Alexander. (2012). Treatment of xerosis with a topical formulation containing glyceryl glucoside, natural moisturizing factors, and ceramide. The Journal of clinical and aesthetic dermatology. 5. 29-39.

El-Chami, C., Foster, A. R., Johnson, C., Clausen, R. P., Cornwell, P., Haslam, I. S., Steward, M. C., Watson, R. E. B., Young, H. S., & O’Neill, C. A. (2021). Organic osmolytes increase expression of specific tight junction proteins in skin and alter barrier function in keratinocytes. British Journal of Dermatology, 184(3), 482–494. 


El-Chami, C., Haslam, I. S., Steward, M. C., & O’Neill, C. A. (2018). Organic osmolytes preserve the function of the developing tight junction in ultraviolet B-irradiated rat epidermal keratinocytes. Scientific Reports, 8, 5167.

Nicander, I., Åberg, P., & Ollmar, S. (2003). The use of different concentrations of betaine as a reducing irritation agent in soaps monitored visually and non-invasively. Skin Research and Technology, 9(1), 43–49. 


Nicander, I., Rantanen, I., Lundh Rozell, B., Söderling, E., & Ollmar, S. (2003). The ability of betaine to reduce the irritating effects of detergents assessed visually, histologically and by bioengineering methods. Skin Research and Technology, 9(1), 50–58. 


Rantanen, I., Nicander, I., Jutila, K., Ollmar, S., Tenovuo, J., & Söderling, E. (2002). Betaine reduces the irritating effect of sodium lauryl sulfate on human oral mucosa in vivo. Acta Odontologica Scandinavica, 60(5), 306–310.


Rauhala, L., Hämäläinen, L., Dunlop, T. W., Pehkonen, P., Bart, G., Kokkonen, M., Tammi, M., Tammi, R., & Pasonen-Seppänen, S. (2015). The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes—A genome-wide study in UVB-irradiated organotypic 3D cultures. Toxicology in Vitro, 30(1 Pt B), 462–475.

Garcia, C., Valin, E., Hernandez, E., Kern, C., & Roso, A. (2023). Effect of a simple sugar-based ingredient on skin moisturization: Biological mode of action and clinical effects. Asian Journal of Beauty & Cosmetology, 21(1), 13–27. 


Gougeon, S., Hernandez, E., Chevrot, N., et al. (2023). Evaluation of a new connected portable camera for the analysis of skin microrelief and the assessment of the effect of skin moisturisers. Skin Research and Technology, 29, e13190. 


Fluhr, J. W., Tfayli, A., Darlenski, R., Darvin, M. E., Joly-Tonetti, N., & Lachmann, N. (2023). Glycerol and natural sugar-derived complex modulate differentially stratum corneum water-binding properties and structural parameters in an in vitro Raman-desorption model. Journal of Biophotonics, 16(1), e202200201. 


Korponyai, C., Szél, E., Behány, Z., et al. (2017). Effects of locally applied glycerol and xylitol on the hydration, barrier function and morphological parameters of the skin. Acta Dermato-Venereologica, 97, 182–187.


Szél, E., Polyánka, H., Szabó, K., et al. (2019). Protective effects of glycerol and xylitol in keratinocytes exposed to hyperosmotic stress. Journal of Cosmetic Dermatology, 18(6), 1650–1659. 


Katsuyama, M., Kobayashi, Y., Ichikawa, H., et al. (2005). A novel method to control the balance of skin microflora. Part 2: A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. Journal of Dermatological Science, 38(3), 207–213.

Antão, H. S., Passerini, E., Guimarães, J. P., Saldanha, J., Coelho, J. D., & Fortunato, M. (2017). Efficacy, tolerability and acceptability of topical regimens containing the prebiotic Biolin in children suffering from atopic dermatitis. European Journal of Pediatric Dermatology, 27(2), 102–112.


Le Bourgot, C., Guillochon, A., Pouradier, F., et al. (2022). Effects of short chain fructo-oligosaccharides on selected skin bacteria: Toward a targeted prebiotic for skin health. Scientific Reports, 12, 9342.


Li, M., Dsouza, N., Kim, E., et al. (2023). Multi-omic approach to decipher the impact of skincare products with pre/postbiotics on skin microbiome and metabolome. Frontiers in Medicine, 10, 1165980.


Li, M., Hernandez, E., Kern, C., et al. (2021). The prebiotic effect of triple-biotic technology on skin health. Journal of Cosmetics, Dermatological Sciences and Applications, 11(4), 380–397.


Antão, H. S., Passerini, E., Guimarães, J. P., Saldanha, J., Coelho, J. D., & Fortunato, M. (2017). Efficacy, tolerability and acceptability of topical regimens containing the prebiotic Biolin in children suffering from atopic dermatitis. European Journal of Pediatric Dermatology, 27(2), 102–112.


Fournière, M., Latire, T., Souak, D., Feuilloley, M., & Bedoui, Y. (2020). Staphylococcus epidermidis and Cutibacterium acnes: Two major sentinels of skin microbiota and the influence of cosmetics. Microorganisms, 8(11), 1752.

Kim, H.-B., Park, J.-H., & Kim, Y.-S. (2025). Skin microbiome dynamics in atopic dermatitis. Allergy, Asthma & Immunology Research, 17(2), 165–180.


Phan, S., Sheshanna, B., & co-authors. (2023). Topical prebiotics and microbiome metabolites: A systematic review of the effects of altering the skin microbiome in atopic dermatitis. Journal of Integrative Dermatology.

Pelle, E., et al. (2025). Post-marketing observational study of acetyl heptapeptide-4 in sensitive skin. Journal of Cosmetic Dermatology. (Advance online).

Campiche, R., Schwab, M., Margot, P., Rytz, A., & Voegeli, R. (2024). Establishing the inhibition of the serine protease plasmin as an innovative anti-age strategy in cosmetics. Cosmetics, 11(3), 103.

Ko, H.-J., Choi, J.-H., Kim, C., & Ryu, J.-M. (2025). Poly-γ-glutamic acid from a novel Bacillus subtilis strain: Strengthening the skin barrier and improving moisture retention in keratinocytes and a reconstructed skin model. Biomolecules, 15(x), x–x. 


Radzikowska, A., Zdroik, K., Dębowska, R., Ostrowska, B., Rzepka, M., Pasikowska-Piwko, M., Rogiewicz, K., & Eris, I. (2019, October). PGA (γ-polyglutamic acid) vs hyaluronic acid—Comparative study of natural moisturizers. Poster presented at EADV 2019, Madrid. 

Plant-/microbial-derived PDRN exhibits the same A2A-receptor biology and ex vivo skin-barrier/wound-healing effects as salmon-derived PDRN. Human topical data exist for polynucleotides in wounds, but head-to-head clinical trials of vegan sources are not yet published.


Lee, K.-S., Kim, Y.-H., Yu, B., Lee, J., Kim, H., & Kim, J. (2023). Analysis of skin regeneration and barrier-improvement efficacy of polydeoxyribonucleotide isolated from Panax ginseng adventitious root. Molecules, 28(22), 7726. 


Chae, D., Oh, S.-W., Choi, Y.-S., Kang, D.-J., Park, C.-W., Lee, J., & Seo, W.-S. (2025). First report on microbial-derived polydeoxyribonucleotide: A sustainable and enhanced alternative to salmon-based polydeoxyribonucleotide. Current Issues in Molecular Biology, 47(1), 41. 

Zhang, H., et al. (2024). Sodium trehalose sulfate upregulates barrier factors and hydrates skin. Dermatologic Therapy, 37(2), e16345.

Woźniak, B., et al. (2023). Optimization of a cosmetic formulation with Tremella fuciformis extract; hygroscopicity vs HA. Cosmetics, 10(3), 82.


Zhuang, J., et al. (2021). Tremella polysaccharides: Structure, moisturizing and antioxidant properties. Food Science and Human Wellness, 10(3), 408–420.

Fiume, M. M., et al. (2018). Safety assessment of tocopherols and tocotrienols as used in cosmetics. International Journal of Toxicology, 37(S1), 61S–94S.

Tidy Pores Evidence

Here are the research and studies that inspired our Tidy Pores formula:

Acetamidoethoxyethanol (AEEA) is a cosmetic humectant (EU: Cosmile function listing). Supplier-run in-vivo corneometry shows immediate and 30-hour hydration after a single application, with ATR-FTIR imaging indicating stratum-corneum deposition and no detectable disruption of lipid order vs. glycerin comparators; recommended 1–10% in leave-on formulations (Nouryon TDS). Independent regulatory assessment (NICNAS/AICIS, 2019) classifies AEEA as not hazardous under GHS and not an unreasonable risk for public health at the notified cosmetic uses (≤15% leave-on; ≤20% rinse-off). Reported log P = −2.7 and high water solubility support a low-lipid, Malassezia-unfavorable profile.” COSMILE EuropeCloudinaryindustrialchemicals.gov.au

El-Chami, C., Foster, A. R., Johnson, C., Clausen, R. P., Cornwell, P., Haslam, I. S., Steward, M. C., Watson, R. E. B., 


Young, H. S., & O’Neill, C. A. (2021). Organic osmolytes increase expression of specific tight junction proteins in skin and alter barrier function in keratinocytes. British Journal of Dermatology, 184(3), 482–494. 


El-Chami, C., Haslam, I. S., Steward, M. C., & O’Neill, C. A. (2018). Organic osmolytes preserve the function of the developing tight junction in ultraviolet B-irradiated rat epidermal keratinocytes. Scientific Reports, 8, 5167.


Nicander, I., Åberg, P., & Ollmar, S. (2003). The use of different concentrations of betaine as a reducing irritation agent in soaps monitored visually and non-invasively. Skin Research and Technology, 9(1), 43–49. 


Nicander, I., Rantanen, I., Lundh Rozell, B., Söderling, E., & Ollmar, S. (2003). The ability of betaine to reduce the irritating effects of detergents assessed visually, histologically and by bioengineering methods. Skin Research and Technology, 9(1), 50–58. 


Rantanen, I., Nicander, I., Jutila, K., Ollmar, S., Tenovuo, J., & Söderling, E. (2002). Betaine reduces the irritating effect of sodium lauryl sulfate on human oral mucosa in vivo. Acta Odontologica Scandinavica, 60(5), 306–310.


Rauhala, L., Hämäläinen, L., Dunlop, T. W., Pehkonen, P., Bart, G., Kokkonen, M., Tammi, M., Tammi, R., & Pasonen-Seppänen, S. (2015). The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes—A genome-wide study in UVB-irradiated organotypic 3D cultures. Toxicology in Vitro, 30(1 Pt B), 462–475.

Schrader A, Siefken W, Kueper T, Breitenbach U, Gatermann C, Sperling G, Biernoth T, Scherner C, Stäb F, Wenck H, Wittern KP, Blatt T. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol Physiol. 2012;25(4):192-9. doi: 10.1159/000338190. Epub 2012 May 15. PMID: 22584263.


Weber, Teresa & Kausch, Martina & Rippke, Frank & Schoelermann, Andrea & Filbry, Alexander. (2012). Treatment of xerosis with a topical formulation containing glyceryl glucoside, natural moisturizing factors, and ceramide. The Journal of clinical and aesthetic dermatology. 5. 29-39.

Qu L, Wang F, Ma X. The extract from Portulaca oleracea L. rehabilitates skin photoaging via adjusting miR-138-5p/Sirt1-mediated inflammation and oxidative stress. Heliyon. 2023 Nov 7;9(11):e21955. doi: 10.1016/j.heliyon.2023.e21955. PMID: 38034793; PMCID: PMC10682634.


Wei Haobin , Chen Zhang , Lai Wenjie , Wang Wenxian , Bian Xiqing , Zhang Limin , Li Xinzhi.  Aqueous extracts of Portulaca oleracea L. alleviate atopic dermatitis by restoring skin barrier function.  Frontiers in Pharmacology.  Volume 16 - 2025. DOI: 10.3389/fphar.2025.1591394. ISIN: 1663-9812

H. Kum, K.-B. Roh, S. Shin, K. Jung, D. Park, E. Jung.  Evaluation of anti-acne properties of phloretin in vitro and in vivo.  First published: 24 July 2015 https://doi.org/10.1111/ics.12263


Anunciato Casarini TP, Frank LA, Pohlmann AR, Guterres SS. Dermatological applications of the flavonoid phloretin. Eur J Pharmacol. 2020 Dec 15;889:173593. doi: 10.1016/j.ejphar.2020.173593. Epub 2020 Sep 21. PMID: 32971088. 

Atallah DA-A, Badran AY, Makhlouf AG, Mekkawy MM. Topical Silymarin Cream as a Novel Therapy Versus Salicylic Acid Peels in Acne Vulgaris: A Split-Face Clinical Trial. Journal of Cutaneous Medicine and Surgery. 2023;28(1):22-28. doi:10.1177/12034754231211568


Cloe Boira, Emilie Chapuis, Laura Lapierre, Jean Tiguemounine, Amandine Scandolera, Romain Reynaud.  Silybum marianum Extract: A Highly Effective Natural Alternative to Retinoids to Prevent Skin Aging Without Side Effects.  First published: 18 December 2024 https://doi.org/10.1111/jocd.16613.  


Altaei, T. (2012). The treatment of melasma by silymarin cream. BMC dermatology, 12(1), 18.  https://doi.org/10.1186/1471-5945-12-18.  


Nofal, A., Ibrahim, A. S. M., Nofal, E., Gamal, N., & Osman, S. (2019). Topical silymarin versus hydroquinone in the treatment of melasma: A comparative study. Journal of cosmetic dermatology, 18(1), 263-270.


Lynch, S., Murtaugh, A., Green, D., Lee, B., & Choudhary, H. (2021). A topical antioxidant serum containing silymarin prevents sebum peroxidation in oily, blemish-prone skin. Journal of the American Academy of Dermatology, 85(3), AB200. https://doi.org/10.1016/j.jaad.2021.06.812


Kim, J., Lee, Y. N., Lee, J., Lee, S. G., Kim, H., Choi, Y. S., ... & Kim, J. (2023). Efficacy and safety of silymarin containing antioxidant serum as an adjuvant treatment of mild‐to‐moderate acne vulgaris: a prospective, open‐label pilot study. Journal of Cosmetic Dermatology, 22(2), 561-568.

Wei, J., Zhang, J., Hu, F., Zhang, W., Wu, Y., Liu, B., Lu, Y., Li, L., Han, L., & Lu, C. (2024). Anti-psoriasis effect of 18β-glycyrrhetinic acid by breaking CCL20/CCR6 axis through its vital active group targeting GUSB/ATF2 signaling. Phytomedicine, 128, 155524. https://doi.org/10.1016/j.phymed.2024.155524


Xie L, Ma C, Li X, Chen H, Han P, Lin L, Huang W, Xu M, Lu H, Du Z. Efficacy of Glycyrrhetinic Acid in the Treatment of Acne Vulgaris Based on Network Pharmacology and Experimental Validation. Molecules. 2024 May 16;29(10):2345. doi: 10.3390/molecules29102345. PMID: 38792208; PMCID: PMC11123902.


Hagiwara K, Kiso A, Ono S, Kitamura H, Yamanishi H, Tsunekawa Y, Iwabuchi T. 18-β-Glycyrrhetinic Acid Promotes Hair Growth by Stimulating the Proliferation of Dermal Papilla Cells and Outer Root Sheath Cells, and Extends the Anagen Phase by Inhibiting 5α-Reductase. Biol Pharm Bull. 2024;47(7):1392-1395. doi: 10.1248/bpb.b24-00302. PMID: 39085137.


Kowalska, A., & Kalinowska-Lis, U. (2019). 18β-Glycyrrhetinic acid: Its core biological properties and dermatological applications. International Journal of Cosmetic Science, 41(5), 457–464. https://doi.org/10.1111/ics.12548


Hung, C. F., Hsiao, C. Y., Hsieh, W. H., Li, H. J., Tsai, Y. J., & others. (2017). 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts. PLOS ONE, 12(8), e0182981. https://doi.org/10.1371/journal.pone.0182981

Chaudhary, P., Mitra, D., Das Mohapatra, P. K., Docea, A. O., Myo, E. M., Janmeda, P., Martorell, M., Iriti, M., Ibrayeva, M., Sharifi-Rad, J., Santini, A., Romano, R., Calina, D., & Cho, W. C. (2023). Camellia sinensis: Insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. Arabian Journal of Chemistry, 16(5), 104680. https://doi.org/10.1016/j.arabjc.2023.104680


Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients. 2019 Feb 23;11(2):474. doi: 10.3390/nu11020474. PMID: 30813433; PMCID: PMC6412948.

Trivedi MK, Panda P, Sethi KK, Gangwar M, Mondal SC, Jana S. Solid and liquid state characterization of tetrahydrocurcumin using XRPD, FT-IR, DSC, TGA, LC-MS, GC-MS, and NMR and its biological activities. J Pharm Anal. 2020 Aug;10(4):334-345. doi: 10.1016/j.jpha.2020.02.005. Epub 2020 Feb 15. PMID: 32923007; PMCID: PMC7474126.

Woźniak, B., et al. (2023). Optimization of a cosmetic formulation with Tremella fuciformis extract; hygroscopicity vs HA. Cosmetics, 10(3), 82.


Zhuang, J., et al. (2021). Tremella polysaccharides: Structure, moisturizing and antioxidant properties. Food Science and Human Wellness, 10(3), 408–420.

Wang Q, Zhong Y, Li N, Du L, Ye R, Xie Y, Hu F. Combination of dimethylmethoxy chromanol and turmeric root extract synergically attenuates ultraviolet-induced oxidative damage by increasing endogenous antioxidants in HaCaT cells. Skin Res Technol. 2023 Dec;29(12):e13539.


Nonell, S., García-Díaz, M., Viladot, J. L., & Delgado, R. (2013). Singlet molecular oxygen quenching by the antioxidant dimethylmethoxy chromanol in solution and in ex vivo porcine skin. International Journal of Cosmetic Science, 35(3), 273–279. 


Cebrián, J., Messeguer, A., Facino, R. M., & García Antón, J. M. (2005). New anti-RNS and -RCS products for cosmetic treatment. International Journal of Cosmetic Science, 27(5), 271–278.


Souza, C., et al. (2017). Radical-scavenging activity of a sunscreen enriched by antioxidants providing protection in the whole solar spectral range. Skin Pharmacology and Physiology, 30(2), 81–89.

Fiume, M. M., et al. (2018). Safety assessment of tocopherols and tocotrienols as used in cosmetics. International Journal of Toxicology, 37(S1), 61S–94S.

Experience A New Way to Support Acne-Prone Skin

Meet our pre and postbiotic packed gel-cream moisturizer made for even the most breakout-prone skin.

GET IN, WE'RE GLOWING →

Join The #EGOSYSTEM

Skincare is personal. Your scroll should be too. Follow along for skincare rituals, cycle support, and all the #EgoChecks you’re gonna need on the journey of loving the skin you’re in.